Session 3

International Working Group & Country Group Review
47th Meeting of IRAC International, Indianapolis, USA

Thursday - March 29th, 2012

Sucking Pest WG
Jonathan Henen
IRAC Sucking Pest Working Group

IRAC Spring Meeting Report

Indianapolis March 2012
Agenda

• Review of activities in 2011
• A look at the goals for 2011 and what was accomplished
• *Myzus persicae* resistance to neonicotinoids in Southern Europe
• *Myzus persicae* resistance management recommendations
• Asian citrus psyllid poster
• Sucking Pest WG 2012 goals
SP WG Team Members

Jonathan Henen
Ralf Nauen
Russell Slater
Steve Skillman
Eric Andersen
Tatjana Sikuljak
Matthias Haas
Dan Vincent
Luiz Gomez
James Thomas
Jean-Paul Genay
Alan Porter

Makhteshim Agan (Chairman)
Bayer Crop Science
Syngenta
Syngenta
Cheminova
BASF
Bayer Crop Science
DuPont
Dow Agrosciences
Dow Agrosciences
Nufarm
IRAC Coordinator
Four telephone conference calls:
All dealing with *Myzus persicae* resistance
5/4/2012
13/7/2012
10/11/2012
29/11/2012

Conference calls with Ian Denholm (Rothamsted, UK) covering the analysis work we contracted Rothamsted to carry out with regard to *Myzus persicae* neonicotinoid resistance

Numerous emails with Ian Denholm & team covering the analysis work we contracted Rothamsted to carry out on the *Myzus persicae* neonicotinoid resistance
Face to face meeting in Barcelona (BCS office) 12 January 2012:

Myzus persicae neonicotinoid resistance

Participants:
- Ian Denholm & his team from Rothamsted
- Pablo Bielza (Univ. Cartagena, Spain)
- Emanulae Mazzoni (Univ. Catolica Piacenza, Italy)
- Carlos Lozano (Servicio Proteccion Vegetales/ Aragon)
- Antoni Dolset (Servei Proteccio Vegs/Catalunya)

Phone calls and email exchanges with IRAC Brazil and Alejandro Arevalo (BASF) all dealing with the compilation of the Asian Citrus Psyllid poster
Sucking Pest WG 2011 Goals

1. Follow up on neonicotinoid resistance in *Myzus persicae* in Southern France, Spain and Italy
 - Monitor resistance
 - Analyze findings
 - Compile recommendations

 Done

2. Compile Asian Citrus Psyllid poster
 - Relevant to Brazil & USA

 1st draft ready

3. Compile Brown Plant Hopper poster
 - Relevant to S. E.Asia

 No progress
2010 began with M. persicae as our main focus, but 2011 can really be dubbed as “Year of the Myzus”

- The green peach aphid *Myzus persicae* dominated the Sucking Pest WG’s 2010 agenda

Myzus persicae resistance to neonicotinoids
- In past very few cases of neonicotinoid resistance since chemistry introduced in 1991
- All cases so far identified based on metabolic resistance (whiteflies, plant hoppers, potato beetles)
- Until 2009 no major cases of resistance in aphids was identified
- Small shifts reported in populations collected from peach or tobacco
- Since 2003 there have increased reports of reduced performance of neonicotinoids in French peach crops with one population positively identified in 2009 with high levels of resistance
- Resistance mechanism is both metabolic (over expression of CYP6CY3 monoxygenase gene) & target site (nicotinic acetylcholine receptor mutation).
- Confirmed by Rothamstead Research, Syngenta & BCS
• Similarly to 2010, the green peach aphid *Myzus persicae* dominated the Sucking Pest WG‘s agenda

Rothamstead Research (Ian Denholm) conducted the following work as contracted by IRAC SP WG:

• Profiling of known resistance mutations in European populations of *Myzus persicae* using molecular tools
• They ran a study with *Myzus* field samples collected by IRAC member companies and sent to Rothamstead
• The samples were characterised by molecular tools for NNI-resistance mutation, MACE, kdr, super-kdr & Esterase
• Initial results were presented to the SP WG via Email and followed up with a conference call
• Main results were presented at the face to face meeting in Barcelona
Sucking Pest WG Activity:
Meeting with Spanish & Italian Representatives (Barcelona)

Participants:
- Martin Williamson, Chris Bass & Ian Denholm (Rothamsted, UK)
- Pablo Bielza (Univ. Cartagena, Spain); Emanuela Mazzoni (Univ. Catolica Piacenza, Italy)
- Carlos Lozano (Servicio Proteccion Vegetales/ Aragon)
- Antoni Dolset (Servei Proteccio Vegs/Catalunya)
- IRAC Sucking Pest Working Group members:
 - Ralf Nauen & Matthias Haas (BCS), Russell Slater & Stephen Skillman (Syngenta), Andreas Huber (DuPont), Jonathan Henen (MAI)
- Hosted by Josep Izquierdo (IRAC Spain, BCS)

Location & date: BCS Offices - Barcelona, 6.1.2012
Sucking Pest WG Activity: Meeting with French Authorities

Participants:
• Mr Bertrand Bourguin – Expert National “Arboriculture Fruitière”
• Stephen Skillman, Syngenta CP AG (IRAC Sucking Pest Working Group)
• Gerald Huart, Makhteshim AGAN (IRAC, Pollen Beetle Working Group)

Location & date: Ministry of Agriculture, DRAAF de Midi-Pyrénees, Toulouse, 21.2.2012
Meeting Outcomes

<table>
<thead>
<tr>
<th>Action</th>
<th>Whom</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss strategy with Fruit Specialists and provide feedback to IRAC SPWG (Steve Skillman)</td>
<td>B. Bourguin</td>
<td>4<sup>th</sup> week Feb</td>
</tr>
<tr>
<td>Modify the IRAC statement accordingly to reflect the French position, circulate to SPWG for approval</td>
<td>Russell/Steve</td>
<td>1<sup>st</sup> week March</td>
</tr>
<tr>
<td>Schedule an IRAC SPWG telecon for early March to discuss the French response and agree the IRAC statement</td>
<td>Jonathan</td>
<td>ASAP for 1<sup>st</sup> or 2<sup>nd</sup> week March</td>
</tr>
<tr>
<td>Get IRAC Central Committee approval for the statement</td>
<td>Jonathan</td>
<td>2<sup>nd</sup> week March</td>
</tr>
<tr>
<td>Distribute the statement to authorities in France, Spain and Italy and also to IRAC member countries for final review and agreement by end of 3<sup>rd</sup> week March</td>
<td>SPWG</td>
<td>End 2<sup>nd</sup> week March</td>
</tr>
<tr>
<td>Issue IRAC statement</td>
<td>Alan Porter</td>
<td>End 3<sup>rd</sup> week March</td>
</tr>
<tr>
<td>Prepare statement for BSV (Bulletin Santé Vegetal – ZOOM-Arbo) to diffuse recommendation to Technical Services in the Midi-Pyrenees Region</td>
<td>B. Bourguin</td>
<td>3<sup>rd</sup> week March latest</td>
</tr>
<tr>
<td>Start work on “Note Nationale” from the ministry to be issued latest December 2012</td>
<td>B. Bourguin with CtiFL and INRA</td>
<td>May-November 2012</td>
</tr>
</tbody>
</table>
IRAC management recommendations for neonicotinoid-resistant *Myzus persicae*:
E.g.: Peaches, Nectarines in Spain

<table>
<thead>
<tr>
<th>English</th>
<th>Pre-Flowering</th>
<th>Post-flowering</th>
<th>Fruit Maturity, Harvest & Senescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Español</td>
<td>Pre-floración</td>
<td>Pos-floración</td>
<td>Crecimiento del fruto, Cosecha</td>
</tr>
<tr>
<td>Scale control products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myzus persicae</td>
<td>Myzus eggs</td>
<td>Myzus migration to 2ndary hosts</td>
<td>Safe period for use of neonicotinoids on oriental fruit moth</td>
</tr>
<tr>
<td>Peach potato aphid</td>
<td>Myzus apterous Fundatrix 3 cycles on peach</td>
<td>Myzus migration to primary hosts, mating and eggs</td>
<td></td>
</tr>
<tr>
<td>Other aphids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anarsia lineatella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peach twig borer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cydia molesta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratitis capitata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medfly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidopteracides (Including Neonicotinoids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptericides (Excluding Neonicotinoids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonicotinoid Free Window</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fly control products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamates (1A)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrethroids (3A)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pymetrozine (9B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flonicamid (9C)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note, Myzus persicae may also be resistant to these group in some locations
IRAC management recommendations for Neonicotinoid-resistant *Myzus persicae*:
E.g.: Peaches, Nectarines in FRANCE

<table>
<thead>
<tr>
<th>English</th>
<th>Pre-Flowering</th>
<th>Post-flowering</th>
<th>Fruit Maturity, Harvest & Senescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Français</td>
<td>Avant floraison</td>
<td>Après floraison</td>
<td>Maturation des fruit, Recolte</td>
</tr>
</tbody>
</table>

Scale control products
- *Pseudococcus*
 - *Myzus persicae*
 - Peach potato aphid
 - Other aphids

Thrips
- *Anarsia lineatella*
- *Cydia molesta*
- *Oriental Fruit Moth*
- *Ceratitis capitata*
- *Medfly*

Lepidoptericides (Excluding Neonicotinoids)

Lepidoptericides (Including Neonicotinoids)

Fly control products

Max. of one Neonicotinoid application post-flowering

Note, Myzus persicae may also be resistant to these group in some locations
IRAC management recommendations for Neonicotinoid-resistant *Myzus persicae*:

E.g.: Peaches, Nectarines in ITALY

<table>
<thead>
<tr>
<th>English</th>
<th>Italian</th>
<th>Pre-Flowering</th>
<th>Post-flowering</th>
<th>Fruit Maturity, Harvest & Senescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudococcus</td>
<td>Prima della fioritura</td>
<td>Dopo la fioritura</td>
<td>Frutti sviluppati, Raccolta</td>
<td></td>
</tr>
<tr>
<td>Myzus persicae</td>
<td>Peach potato aphid</td>
<td>Myzus eggs</td>
<td>Myzus apterous Fundatrix 3 cycles on peach</td>
<td></td>
</tr>
<tr>
<td>Other aphids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anarsia lineatella</td>
<td>Peach twig borer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cydia molesta</td>
<td>Oriental Fruit Moth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratitis capitata</td>
<td>Medfly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale control products
- Mineral Oil (1.5%)
- Pyrethroids (3A)*
- Neonicotinoid (4A)
- Flonicamid (9C)

Carbamates (1A)* Pyrethroids (3A)*
- Pymetrozine (9B)
- Flonicamid (9C)
- Spirotetramat (23)
- Neonicotinoid (4A)

Thrip control products
- Carbamates (1A)* Pyrethroids (3A)*

Lepidoptericides (Excluding Neonicotinoids)
- Lepidoptericides (Including Neonicotinoids)

Fly control products
- Maximum of one neonicotinoid application

Note, Myzus persicae may also be resistant to these group in some locations.
2010/11 Monitoring results of the spread of neonicotinoid resistance Myzus persicae

Source: IRAC, Dec 2011

- Resistance detected 2011
- Resistance detected 2010
- Sensitive populations
- No samples tested

Cities mentioned:
- Marseille
- Valencia
- Murcia
- Malaga
- Rome
- Naples
- Emilia-Romagna
- Toulouse
- Lyon
- Monaco
- Barcelona
- Madrid
- Avignon
- Perpignan
Lessons to be learnt

• Do not assume that the relevant authorities in different countries will see eye to eye on resistance issues – this means that recommendations end up becoming country specific rather than regional

• Allow for more time for meetings with authorities and required follow up

• If possible initiate the process much earlier – late autumn or early winter to allow for enough time for related activities to be carried out and for follow up with authorities

• Are we interested in carrying out further work and analysis of the aphid sampled for other types of resistance?
Global Poster Launch

- 1st Global sneak review of the initial draft of the Asian Citrus Psyllid Poster
- Thanks to Hector Alejandro Arevalo, Senior Research Scientist BASF
- Also to Tatjana who recruited Alejandro for the job
- Current status:
 - Poster has been sent to Pedro Yamamoto and Celso Omoto in Brazil for their input as for now it has a US bias
The Asian citrus psyllid, *Diaphorina citri*:
Resistance management the base for a successful IPM program

Introduction and Biology

The Asian citrus psyllid (ACP), *Diaphorina citri* Kuwayama (Fig. 1a.), is the insect vector associated with the bacteria *Candidatus Liberibacter asiaticus* and *C. L. americanus*. These bacteria are suspected to be the causal agents of Huanglongbing (HLB) in Asia, and America. Infected citrus trees start showing symptoms such as a fruit drop and mottled leaves anywhere from 5 months up to 3 years after inoculation. During these initial asymptomatic period of time, the plants can also be source of inoculum, hence the need to manage the vector even if the trees are not showing symptoms (Fig. 2b.). Once the trees are infected, the production will decline rapidly rendering the infected trees unproductive in a few years, if left unmanaged.

Resistance to Insecticides

Various levels of insecticide susceptibility have been reported in Florida, USA (Table 1). Although, the values are not very high in comparison to the resistant values of other pest, it is concerning that the efficacy of some of the most used insecticides is already declining after 5 years of *D. citri* management in the USA. For this reason we encourage growers to practice an integrated pest management approach of this pest, with emphasis in sustainability, and rotation of MoA.

Susceptibility Test Method 002

This management plan has been created based on several recommendations by Universities and Institutions working with Citrus psyllid in Brazil and the US. There are several MoA available to be sprayed in each one of the annual phenological stages of the plant. It is very important to rotate these MoA to reduce the potential for resistance. Rotating types of application for the same ai is not beneficial for resistance management. An application by drench should not be followed by a foliar application of the same MoA, this will encourage resistance in the wild populations.

Sampling methods ad the establishment of local thresholds are recommended to reduce the amount of calendar sprays. Management of adults during the Pre-bloom-dormant season is key to maintain low populations the rest of the cycle.

Management Plan cont.

Table 2: Management plant and opportunities for MoA rotation used for D. citri control.

<table>
<thead>
<tr>
<th>Sampling</th>
<th>Pre-bloom Dorm</th>
<th>Bloom</th>
<th>Harvest</th>
<th>Growing</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Spray strategy

- Cooperative area-wide applications
- No applications of ai: torque to base
- Augmentation of natural enemies
- Avoid range block with carbon present
- Apply according to sampling and crop threshold
- Augmentation of natural enemies

Type of ai

- Broad spectrum
- ai: with short MoA
- Reduced rate

Relevant Literature

The Asian citrus psyllid (ACP), *Diaphorina citri* Kuwayama (Fig. 1a.), is the insect vector associated with the bacteria *Candidatus Liberobacter asiaticus* and *C. L. americanus*. These bacteria are suspected to be the causal agents of Huanglongbing (HLB) in Asia, and America. Infected citrus trees start showing symptoms such as fruit drop and mottled leaves anywhere from 5 months up to 3 years after inoculation. During this initial asymptomatic period of time, the plants can also be source of inoculum, hence the need to manage the vector even if the trees are not showing symptoms (Fig. 2b.). Once the trees are infected, production will decline rapidly rendering the infected trees unproductive within a few years, if left unmanaged.

Eggs are laid on the inner-side of curled/folded leaves which protects the eggs and the young nymphs from proper insecticide contact. There are 5 nymphal stages requiring 15 to 47 days after oviposition to develop into adults depending on the environmental conditions. Nymphs acquire the bacteria and the adults are responsible for vectoring it to uninfected plants and for re-inoculation of plants that are already infected. Adults are the main targets of the insecticide applications, since they are the vectors of the bacteria while the nymphs are protected from contact insecticides by the developing leaves.
Various levels of insecticide susceptibility have been reported in Florida, USA (Table 1). Although, the values are not very high in comparison to the resistant values of other pests, it is concerning that the efficacy of some of the most commonly used insecticides is already declining after only 5 years of *D. citri* management in the USA. For this reason we encourage growers to practice an Integrated Pest Management approach to this pest, with the emphasis on sustainability and rotation of Modes of Action.
<table>
<thead>
<tr>
<th>IRAC Moa</th>
<th>Pre-bloom Dormant</th>
<th>Bloom</th>
<th>Harvest</th>
<th>Growing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NR. Oil</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
2012 Goals

1. Disseminate IRAC recommendations to all relevant authorities & continue monitoring of neonicotinoid resistance in Myzus persicae in Southern France, Spain & Italy
 - First get Executive approval of recommendations
 - Distribute IRAC recommendations in relevant countries
 - Continue aphid sampling and resistance monitoring (Would require budgeting & executive approval)
 - Conduct continual analysis of findings
 - Compile new recommendations if required

2. Finish Asian Citrus Psyllid poster
 - Relevant to both Brazil & the USA

3. Compile Brown Plant Hopper poster
 - Relevant to S. E. Asia

4. Define new sucking pest resistance issues requiring IRAC intervention
Thanks

- **Rothamsted UK**: Martin Williamson, Chris Bass & Ian Denholm
- **Pablo Bielza**: (Univ. Politec. Cartagena), Emanuele Mazzoni (Universita Catolica Piacenza, Italy)
- **Spanish Authorities**: Carlos Lozano Servicio Protección Vegetales/Aragon, Antoni Dolset Servei Protecció Vegs/Catalunya
- **Barcelona Meeting participants**: Josep Izquierdo (IRAC Spain, Bayer), Andreas Huber (Dupont), Ralf Nauen & Matthias Haas, (Bayer), Russell Slater & Stephen Skillman (Syngenta), Jonathan Henen (MAI)
- Special Thanks to BayerCropScience Spain and to Josep Izquiererdo for hosting the meeting in the Barcelona BCS premises
- **French Meeting participants**: Stephen Skillman (Syngenta) & Gerald Huart (MAI)