Fall Armyworm (FAW) is a major pest of crops worldwide. It is a moth in the family Noctuidae, and its larvae can cause significant damage to a variety of crops, including maize, sorghum, and rice. The pest is widespread in the Americas, Africa, and Asia, and its distribution is expanding due to climate change and improved transportation networks. The larvae are capable of consuming large quantities of leaves, which can lead to significant yield loss if not controlled.

FAW - Background

Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), (Lepidoptera: Noctuidae) is native to tropical and subtropical regions of the Western Hemisphere, and regularly migrates to cooler regions in summer. FAW has a very wide host range, with a preference for grasses. The most frequent crop hosts are field corn, sweet corn, rice, sorghum, sugar cane, and Bermudagrass. It is also a serious pest in soybean, cotton, peanut/groundnut, Brassicaceae, Cucurbitaceae, alfalfa/lucerne, onions, sweet potatoes, tomatoes and other Solanaceae, and various ornamental plants. Crop damage results mainly from larvae consuming leaf tissue, but larvae will also burrow into the growing point (bud, shoot, etc.), destroying potential future plant growth. Yield loss can reach 30-60%.

The life cycle is highly temperature dependent and lasts about 30 days in summer to 90 days in winter, resulting in multiple generations per year. There is no diapause in this species. Adults are most active during warm, humid evenings.

FAW IRM example – Spray windows for conventional maize

![Image of spray windows for conventional maize]

Pre-Planting Window
- **Foliar Insecticide MoA A**

Window 1
- Seed Treatment or Foliar Insecticide MoA B

Window 2
- Foliar Insecticide MoA C

Window 3
- Foliar Insecticide MoA D

Window 4
- Foliar Insecticide MoA E

Damage Symptoms

- **Diameter**
 - Semi-transparent patches by young larval feeding: shoot holes on unfurling leaves; severe leaf feeding by older larvae; shoot damage with larval frass and cob damage

Known insecticide resistance in FAW

Resistance results from the repeated exposure of multiple pest generations to the same insecticide mode of action (MoA). Several biochemical mechanisms contribute to the evolution of insecticide resistance in FAW, which may act separately or in concert. Resistance to Carbamates (Group 1A); Organophosphates (Group 1B); Pyrethroids (Group 3A); Bacillus thuringiensis and Cry1F protein (Group 11A); Benzoylureas (Group 15) has been confirmed in several locations. Diamides (Group 28) in Puerto Rico and spinetoram (Group 5) in Puerto Rico.

FAW Resistance Management

To delay the development of insecticide resistance, use a combination of all available pest management and resistance management tools to decrease FAW exposure to insecticides.

- Always follow the directions for use on the label of each product.
- Consult product label or IRAC’s website (www.irac-online.org) to determine the mode of action (MoA) of each product.
- Do not treat successive generations with products of the same MoA.
 - Follow the “treatment windows” approach (see example above)
 - A “treatment window” is the period of residual activity provided by single or sequential applications of products with the same mode of action. This “treatment window” should not exceed approximately 30 days (generally used as the length of one insect pest generation) but can be less and should not exceed two applications of products from the same MoA.
- Following this treatment period rotate to an approximate 30 day “window” of effective insecticides with different MoAs if needed.
- Generally, the total exposure period of products representing a single MoA applied throughout the crop cycle (seedling to harvest) should not exceed approximately 50% of the crop cycle or exceed 50% of the total number of insecticide applications targeted at the same pest species.
- Apply insecticides only when needed based on economic thresholds.
- BT Corn technologies provide effective control of FAW. Plant BT Corn varieties where possible and follow recommended practices.

Damage Symptoms

- **A**: Semi-transparent patches by young larval feeding: shoot holes on unfurling leaves; severe leaf feeding by older larvae; shoot damage with larval frass and cob damage

Known insecticide resistance in FAW

Resistance results from the repeated exposure of multiple pest generations to the same insecticide mode of action (MoA). Several biochemical mechanisms contribute to the evolution of insecticide resistance in FAW, which may act separately or in concert. Resistance to Carbamates (Group 1A); Organophosphates (Group 1B); Pyrethroids (Group 3A); Bacillus thuringiensis and Cry1F protein (Group 11A); Benzoylureas (Group 15) has been confirmed in several locations. Diamides (Group 28) in Puerto Rico and spinetoram (Group 5) in Puerto Rico.