

Mechanisms of insecticide resistance: Historical and more recent developments in target site resistance to insecticides

Martin Williamson & Chris Bass

Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK

Insecticide targets and MoA classes (nerve & muscle)

Overview of target site mutations (nerve & muscle)

Target	cpds	TSR?	mutations	Species
	cyclodienes	yes	rdl (A302S/G)	many
GABA / Cl channels	fiproles	yes	(A302N, R340Q)	planthoppers
Acetylcholinesterase	OPs / CMs	yes	many	many
Sodium Channel	pyrethroids	yes	many	many
Glu / Cl channels	avermectins	yes	G314D / G326E	Spider mites
nACh Receptor	neonicotinoids spinosyns	yes yes	Y151S (α1 + α3) R81T (β1) ko + G275E (α6)	N. Lugens M. persicae, A. gossypii Several + WFT
RyR / Ca⁺ channel	diamides	Yes	G4946E	P. xylostella

Why study target site resistance?

- Identify mutations responsible for causing resistance
- Develop DNA-based assays for resistance monitoring
- Study insecticide / target interactions
 - Investigate species selectivity
 - Further design opportunities?
 - Target-based screening for new compounds

Sensitivity of *M. persicae* clones to pirimicarb

Clone	E4 level	AChE	LC50 ppm	RF
US1L	S	S/S	23	1
T1V	R2	S/S	200	9
1051A	R2	S/R	2800	120
1200Q	R2	R/R	>10000	>500

Mechanism = MACE (<u>modified acetylcholinesterase</u>)

AChE activities of wild-type and MACE aphids with pirimicarb

MACE is caused by a single point mutation in the ace1 gene

- confers resistance to dimethylcarbamates

ace1(S) TTISGGTKTYMIELSLWTIVMTTAVLMI

Nabeshima et at 2003, Andrews et al 2004

Modelling the effect of the S431F mutation on pirimicarb binding

shows that it is possible to 'design' pest-specific compounds

Natural pyrethrins & synthetic pyrethroids

CC12

- Rothamsted pyrethroids still account for ~50% of the pyrethroid market
- over \$30 billion dollar sales over patent life

Voltage-gated Sodium Channel

Resistance to Pyrethroids - knockdown resistance (kdr)

- Reduced sensitivity to DDT was recognised in 1950s in housefly and termed "knockdown resistance" (*kdr*).
- Allelic forms of *kdr* include super-kdr (*s-kdr*) which confers up to 500-fold resistance to deltamethrin. *kdr* and *s-kdr* are recessive traits mapping to chromosome 3 in houseflies.

Sodium channel mutations in Musca domestica

Leu 1014 to Phe (kdr mutation)
 Met 918 to Thr (super-kdr mutation)

Williamson et al. (1996) Molecular & General Genetics 252, 51-60.

Current range of Na channel mutations implicated in resistance

Aphis gossypii Bemisia tabaci Blattella germanica Cydia pomonella Drosophila melanogaster Frankliniella occidentalis Helicoverpa armigera Heliothis virescens Liriomyza huidobrensis Liriomyza sativae Leptinotarsa decemlineata Meligethes aeneus Myzus persicae Plutella xylostella Sitophilus zeamais Spodoptera littoralis Tetranychus evansi Tetranychus urticae Thrips tabaci Triatoma infestans Tuta absoluta Trialeurodes vaporariorum Aedes aegypti Anopheles gambiae Blattella germanica Boophilus microplus Cimex lectularius Ctenocephalides felis Culex pipiens Hematobia irritans Musca domestica Pediculus capitis Sarcoptes scabiei Stomoxys calcitrans

Crystal Structure of Kv1.2 Shaker Voltage-gated Potassium Channel

Long et al (2005) Science 309, 897-903

Homology model for housefly sodium channel

O'Reilly et al. Biochemical Journal (2006) 396, 255-263.

Identifying a binding site for pyrethroids & DDT

O'Reilly et al. Biochemical Journal (2006) 396, 255-263.

Docking studies with pyrethroids & DDT

Fenfluthrin

Testing the model experimentally

Usherwood et al. (2009) FEBS Letters

Summary

We have developed a homology model of the housefly sodium channel and used it to predict a binding site for pyrethroids and DDT.

The model address a number of key features of the known action of pyrethroids:

- 1. The binding site is located in a hydrophobic cavity delimited by the IIS4-S5 linker and the IIS5/IIIS6 helices that is accessible to lipid-soluble insecticides.
- 2. The binding site is formed during activation (opening) of the sodium channel and is consistent with observations that pyrethroids bind preferentially to open channels.
- 3. The binding of pyrethroids is predicted to stabilise the open state of the channel and is consistent with pyrethroid-induced tail currents observed following membrane repolarisation.
- 4. DDT occupies a restricted area of the binding cavity and the reduced number of contacts explains the lower potency of this compound compared to pyrethroids.
- 5. The binding pocket includes several known mutation sites in the IIS4-S5 linker, IIS5 helix and IIIS6 helix that cause reduced sensitivity to pyrethroids/DDT in resistant insect strains.
- 6. The model identifies other key residues in these helices that are likely to contribute to the insect/mite selectivity of these compounds.

Target-site resistance to neonicotinoids

IRAC MoA Classification v 7.2, February 2012 ¹					
Main Group and Primary Site of Action	Chemical Sub-group or exemplifying Active Ingredient	Active Ingredients			
4 Nicotinic acetylcholine receptor (nAChR) agonists Nerve action {Strong evidence that action at one or more of this class of protein is responsible for insecticidal effects}	4A Neonicotinoids	Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, Thiamethoxam,			
	4B Nicotine	Nicotine			
	4C Sulfoxaflor	Sulfoxaflor			

Nicotinic acetylcholine receptor

- target for neonicotinoid insecticides

Vertebrates: 17 subunit genes muscle-type: $\alpha_2\beta\gamma\delta$ neuronal: various types (hetero/homo pentamers)

Invertebrates: 10+ subunit genes neuronal: various types?

Mature muscle receptor is a heteropentamer of non-identical subunits

Target-site resistance in brown planthopper

A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in *Nilaparvata lugens* (brown planthopper)

Zewen Liu*, Martin S. Williamson[†], Stuart J. Lansdell[‡], Ian Denholm[†], Zhaojun Han*[§], and Neil S. Millar[‡]

*Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; ¹Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom; and ¹Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom

Communicated by John E. Casida, University of California, Berkeley, CA, April 18, 2005 (received for review September 24, 2004)

Imidacloprid resistance in field collected Myzus persicae

Myzus persicae clone

Microarray Analysis

Description	Fold change	Parent Sequence ID	Probe name
carboxylesterase; esterase E4	290.98	contig3118	M_persicae3118a
LOC100168312 similar to carboxylesterase; esterase FE4 [Acyrthosiphon pisum]	127.91	454Myzus_30192	CUST_8482_PI410703081
carboxylesterase; esterase E4	62.07	contig720	M_persicae720a
carboxylesterase; esterase FE4	55.25	contig9215	M_persicae9215a
carboxylesterase; esterase E4	43.60	contig720	M_persicae720b
carboxylesterase; esterase E4	42.39	contig4586	M_persicae4586a
cytochrome p450	13.60	contig749	M_persicae749a
cytochrome p450	13.26	contig749	M_persicae749b
cytochrome p450	11.01	contig497	M_persicae497b
cytochrome p450	10.40	contig497	M_persicae497a
LOC100168115 similar to cytochrome P450 CYP6AX1 protein [Acyrthosiphon pisum]	10.18	454Myzus_77428	CUST_29688_PI410703081
cytochrome p450	9.15	contig5173	M_persicae5173a
ref XM_001952692.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 (LOC100163313) ref XM_001947885.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 CYP6AX1 protein	4.36	454Myzus_27444	CUST_7241_PI410703081
(LOC100160895)	2.83	454Myzus_26873	CUST_6689_PI410703081
ref XP_001944530.1 PREDICTED: similar to cytochrome P450 4A7 [Acyrthosiphon pisum]	2.78	contig2519	M_persicae2519a
ref XM_001944991.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 4A7 (LOC100162710)	2.70	454Myzus_27229	CUST_7033_PI410703081
ref XM_001944991.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 4A7	2.67	contig1504	M_persicae1504a
ref XM_001944495.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 4A7 (LOC100158738)	2.65	454Myzus_82930	CUST_33643_PI410703081
ref XM_001947885.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 CYP6AX1 protein (LOC100160895)	2.55	contig643	M_persicae643a
ref XM_001947885.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 CYP6AX1 protein (LOC100160895)	2.52	DW362118.1	CUST_63_PI304494170
ref XM_001947885.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 CYP6AX1 protein (LOC100160895)	2.40	contig643	M_persicae643b
ref XM_001948546.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 CYP6AX1 protein	2.35	454Myzus_74544	CUST_27625_PI410703081
ref XM_001948386.1 PREDICTED: Acyrthosiphon pisum similar to cytochrome P450 CYP6AX1 protein	2.28	contig4886	M_persicae4886a
ref NM_001163211.1 Acyrthosiphon pisum cytochrome P450 protein	2.10	contig1501	M_persicae1501a

Comparative saturation isotherms of 3H-Imidacloprid binding

	High a	ffinity	Low a		
Clone	kd (nM)	Bmax (fmols/mg)	kd (nM)	Bmax (fmols/mg)	Hill value (n _H)
FRC	-	-	4.14	2016	1
4106A	0.083	100	1.7	298	0.78

FRC contains a single point mutation (R81T) in the MpB1 subunit

	α-type subunits				β	α/β	α/β			
Drosophila melanogaster	* Dα1 (ALS)	* Dα2 (SAD)	* Dα3	Dα4	Dα5	D α6	Dα7	Dβ1 (ARD)	Dβ2 (SBD)	DβЗ
Myzus persicae	Μρα2	Μρα1	Μρα3	Μρα4		Mpα7-2	Μρα7-1	Мрβ1		

	Amino Acid Number of <i>Myzus persicae</i> 61 Subunit							
Species	77	78	79	80	81	82	83	84
Homo sapiens β2	Ν	V	W	L	Т	Q	Е	W
Gallus gallus 82	Ν	V	W	L	т	Q	Е	W
Rattus norvegicus 62	Ν	V	W	L	т	Q	Е	W
Drosophila melanogaster 61	С	V	W	L	R	L	V	W
Anopheles gambiae 61	Ν	V	W	L	R	L	V	W
Bemisia tabaci 61	Ν	V	W	L	R	L	V	W
Locusta migratoria 61	Ν	V	W	L	R	L	V	W
Heliothis virescens 61	Ν	V	W	L	R	L	V	W
Ctenocephalides felis 61	Ν	V	W	L	R	L	V	W
Myzus persicae 4106A 81	Ν	V	W	L	R	L	V	W
Myzus persicae 5191A B1	Ν	V	W	L	R	L	V	W
Myzus persicae FRC в1	Ν	V	W	L	(т)	L	V	W

Loop D

Bass C, Puinean AM, Andrews M, Cutler P, Daniels M, Elias J, Paul VL, Crossthwaite AJ, Denholm I, Field LM, Foster SP, Lind R, Williamson MS, Slater R (2011) Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid *Myzus persicae*. *BMC Neurosicence* 12:51.

Neonicotinoid insecticides - Insect selectivity

electronegative pharmacophore (nitro/cyano group) of neonicotinoids

Shimomura et al. (2006) Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol Pharmacol 70:1255-63.

Target-site resistance to diamide insecticides

IRAC MoA Classification v 7.2, February 2012 ¹						
Main Group and Primary Site of Action	Chemical Sub-group or exemplifying Active Ingredient	Active Ingredients				
28 Ryanodine receptor modulators	Diamides	Chlorantraniliprole, Cyantraniliprole, Flubendiamide				
Nerve and muscle action	-					
{Good evidence that action at this protein complex is responsible for insecticidal effects}						

Ryanodine receptors (RyRs)

- Ryanodine receptor is a ER/SR calcium release channel
- There are 3 genes coding for different isoforms in mammals; other vertebrates have 2 isoforms.
- Invertebrates have only one gene encoding RyR
- RyR cDNA is >15 Kb
- Functional channel is formed of 4 monomers each consisting of approximately 5000 amino acids
- Approx. 47% homology between mammalian and insect channels

Yellow - IP3 Receptor

Grey - RyR1 Receptor 6000 per one monomer 5000 4000 3000 ¥ 2000 Number of 1000 0 nAChR Na IP3R RyR channel

Diamide Resistant Plutella

- Two populations of highly resistant *Plutella* from south east Asia screened for mutations associated with resistance
 - Thailand strain (ThaiR) Syngenta Crop Science
 - Philippines strain (Sudlon) Bayer Crop
 Protection
- Partial sequencing done covering entire transmembrane region and diamide sensitivity region described in Silkworm RyR by Kato *et al* 2009

Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, Field LM, Williamson MS, Slater R, Nauen R (2012) Resistance to diamide insecticides in diamondback moth, *Plutella xylostella* (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. *Insect Biochemistry and Molecular Biology* 42, 873-80.

Bioassay results

Bioassay experiments done by members of Bayer Crop Science and Syngenta Crop Protection

Log-dose probit-mortality data for two diamide insecticides tested against $2^{nd}/3^{rd}$ instar larvae of four strains of *P. xylostella* in a leaf-dip bioassay (72h).

Compound	Strain	LC ₅₀ -value [mg/L ⁻¹]	95% FL ^a	Slope (±SD)	RR⁵
Chlorantraniliprole	HS	0.048	0.026-0.15	1.3 ± 0.068	-
	Sudlon	>200	-	-	<mark>>4100</mark>
	Thai S	0.30	0.25 - 0.38	5.1 ± 0.83	-
	Thai R	>60	-	-	<mark>>200</mark>
Flubendiamide	HS	0.15	0.086-0.30	3.8 ± 0.30	-
	Sudlon	>200	-	-	<mark>>1300</mark>
	Thai S	0.08	0.06 - 0.11	3.8 ± 0.59	-
	Thai R	>60	-	-	<mark>>750</mark>

^a95% Fiducial limits, ^bRR=resistance ratio (LC₅₀ of strain Sudlon or ThaiR divided by LC₅₀ of strain HS or ThaiS, respectively)

Sequencing results

Sequencing of transmembrane region and a small portion of N-terminus revealed a mutation resulting in amino acid change G to E at a position 4946. The mutated coding triplet varies between the Sudlon and Thai R strain:

HS/Thai S	GGG
Sudlon	GAA
ThaiR	G <mark>A</mark> G

		v	
PLUXY_RyR	:	FLYSLWYFSFSVMGNFN <mark>H</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4986
PLUXY_res	:	FLYSLWYFSFSVMGNFN <mark>H</mark> FFFAAHLLDVAV <mark>E</mark> FKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	:
ANOGA_RyR	:	FLYSLWYFSFSVMGNFN <mark>Q</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4926
CNAME_RYR	:	FLYSLWYFSFSVMGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4909
DROME_RyR	:	FLYSLWYFSFSVMGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4944
HELVI_RyR	:	FLYSLWYFSFSVMGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4964
APIME_RyR	:	FLYSLWYF T FSILGNYN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIVVYIYTVIAFNFF	: 4900
TRICA_RyR	:	FLYSLWYF <mark>I</mark> FSILGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIVVYIYTVIAFNFF	: 4805
PEREMA_RyR	:	FLYSLWYF <mark>I</mark> FSILGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4946
PERAM_RyR	:	FLYSLWYFTFSILGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVLLLTIIVYIYTVIAFNFF	: 4922
MYZPE_RyR	:	FLYSLWYFTFSILGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVLLLTIIVYIYTVIAFNFF	: 4919
BEMTA_RyR	:	FLYSLWYFTFSILGNFN <mark>N</mark> FFFAAHLLDVAVGFKTLRTILQSVTHNGKQLVLTVMLLTIIVYIYTVIAFNFF	: 4961

Mapping the mutation onto channel structure

Summary - the study of target-site resistance

- Develop mutation-based assays for resistance monitoring
- Study insecticide / target interactions
- Investigate species selectivity
- Further design opportunities?
- Target-based screening for new compounds

Guidelines for preventing and managing insecticide resistance in the peach-potato aphid, Myzus persicae

Acknowledgments

Emyr Davies, Bartek Troczka, Alin Puinean, Steve Foster, Ian Denholm, Lin Field

Christoph Zimmer, Corinna Schorn, Ralf Nauen

Melanie Andrews, Penny Cutler, Miriam Daniels, Jan Elias Verity Paul, Andrew Crossthwaite, Rob Lind, Russell Slater

Andy O'Reilly, Bonnie Wallace

Ian Mellor, Ian Duce, Peter Usherwood