
 

Computer models applied to insecticide 
resistance management 
What is insecticide resistance modelling and who uses it? 
One of the most common questions asked of insecticide resistance researchers is “How long will it 
take for insecticide resistance to occur?” One way to answer this questions is to look at past events 
and identify trends that may repeat. This can be informative, but limited to general trends. For 
example in the crop protection market, it is often predicted that a pest insect that feeds on diverse 
hosts and is treated with  multiple insecticides is much more likely to develop resistance than an 
insect pest found on a single host plant and has limited exposure to insecticides. These kinds of basic 
predictions or trends are regularly used by researchers and insecticide manufacturers to prioritise 
their resistance management activities, focusing on where the risks of resistance development are 
highest or have most economic or social impact. Predicting resistance development with more 
accuracy and reliability beyond these trends becomes considerably more difficult. 

A second frequently asked question is “What are the best ways to delay or prevent the development 
of insecticide resistance?” The most common and often default answer is to rotate different 
insecticide modes of action, so that the insects do not build up resistance to one group of insecticide. 
Despite this being a valid approach, pest management is often a complex system, which is influenced 
by multiple factors (e.g. biological, geographical, meteorological, economical and sociological) and 
often requires more detailed or alternative resistance management guidance. Predicting insecticide 
resistance development and designing methods to slow or prevent its appearance is therefore a 
necessary and challenging task for those who have an interest in providing sustainable insect control. 
It requires an understanding of the inter-dependant factors involved in insect pest management and 
how they are influenced by the surrounding environment. These interactions occur on a large scale 
and over a multi-year time frame, making it difficult to replicate effectively at laboratory or even 
individual field scale. The challenges faced by trying to understand how these multiple interactions 
can affect resistance management have resulted in the increasing utilisation of simulation models.  

In a situation in which running real-world experiments is impractical (or even impossible), computer 
simulations offer a powerful solution to understand complex problems. This is exactly the case of 
resistance-evolution prediction: Although fast from an evolutionary perspective, the time and spatial 
scales involved in this process are simply too large to be dealt with experimentally. The underlying 
evolutionary processes of resistance development are relatively well known, however. With this 
knowledge, researchers can build mathematical models to describe and mimic the actual systems. 
These models can also be calibrated based on real-world cases that have already occurred, improving 
their precision and accuracy.  

In the case of insecticide resistance simulation, researchers will construct a model that simulates the 
environment and its interconnecting factors in which they want to investigate resistance 
development. The model components will include parameters related to pest biology, pesticide 
dynamics, applicator behaviour and environmental conditions, which are either based on measured 
data or on assumptions made by the designer. Once the researchers have validated that their 
simulation successfully mimics an approximation of the real life scenario they wish to model, they 
can change the parameters to see how individual or multiple factors can change the outcome of a 
model and ask “What would happen if…?”. 

 



 

What can we expect from a resistance simulation model? Can it really 
predict the development of insecticide resistance? 
It is clear that insecticide resistance simulation models cannot entirely replicate real-life situations. 
Models are only approximations of the real system. Good models, however, are good such 
approximations. There are many known and unknown interacting factors and chance events in a real 
life environment that make it impossible to fully simulate. Therefore the purpose of an insecticide 
resistance simulation model is to create a simulation of an environment with all the parameters or 
factors that are believed to be critical influences on insecticide resistance development. Any 
insecticide resistance simulation model is unlikely to be a perfect replication of any given rural or 
urban pest management environment, but it does provide a tool in which comparative resistance 
management strategies can be explored in a proactive and timely way. In general insecticide 
resistance models should be seen as a tool to provide an informed best guess at how insecticide 
resistance may develop under different insect control scenarios to the best of the modeller and 
analysists knowledge. 

Resistance-evolution models have a limited prediction power, but within the boundaries defined in 
the model itself, researchers can take advantage of a large number of simulations to provide 
probabilistic predictions (e.g. “within the limits of this model, we can predict that resistance that 
resistance frequency can reach 50% in 5 to 10 years, with 95% confidence”). Just as weather forecast, 
there is a chance that the prediction will not realise. Still weather forecasts are an incredibly useful 
tool used everywhere in the world. 

The main advantage of predictive models in this context, however, is the possibility of comparing 
alternative scenarios (strategies) and evaluate their relative performance. Even if the absolute 
numbers are not necessarily spot on, the comparison of alternative scenarios tends to be very 
reliable in determining the better resistance-management strategy to be implemented in real life. 

 

Are all insecticide resistance simulation models the same? If not, what 
are the differences? 
Computational models differ in several aspects; and models for insecticide resistance evolution are 
no exception. The first aspect in which models can vary is the level of granularity in which they are 
built (in other words, how many parameters/variables are required to regulate the process under 
scrutiny): A model can set about describing high-level general patterns of population density, for 
instance. To investigate phenomena at this level, simple models including a handful of variables are 
probably enough. Models which would involve population density plus interaction with the 
environment would need additional parameters, including interaction parameters. 

There are also different schools of modelling and they have a relation with the level of granularity in 
which researchers are interested in exploring: 

Some models, in fact, don’t even require simulations to be run as their components can be 
sufficiently well described by a series of equations, which in turn can be solved analytically. 
Slightly more complex models still involve a series of equations, but they can be tricky enough to 
require computational methods to be solved. These are the equation-based models, which tend 
to investigate a problem in top-down manner. 

Agent- or individual-based models (IBMs) come from a different school of thought: They are 
built bottom-up, where their more fundamental parts are the individual agents in the system 



 

(e.g. insects in the pest population). The complexity of a model like this depends on how many 
levels the model contains (e.g. individuals (1) that form a population (2), possibly part of meta-
population (3 levels)) and the number of variables each individual contains (e.g. sex, age, feeding 
behaviour, number of populations, population size, etc.). This kind of model almost always 
requires computer simulations to come to life and has only been used to extent in which 
computers can handle them, of course. 

Regardless of the school of modelling used, simplicity is always the order of the day. A good model is 
only as complex as necessary (not a single parameter more). 

Different questions in insecticide resistance evolution can be better tackled in either one or other 
approach. If simple and well-known high-level phenomena are the focus, equation-based models are 
generally all that is needed; if there are more low-level nuances to the question and emergent 
properties of the system could be expected, then IBMs tend to provide more robust depictions of the 
real-world system. 

 

What kind of information do I need to build an insecticide resistance 
simulation model? 
This depends heavily on the kind of model chosen (see question above), but a typical resistance 
evolution model would incorporate the following information: 

• Fundamental pest-biology parameters 
o Population dynamics 

§ Population size – This is a key number defining the kind of evolutionary 
processes a population will undergo. The lower the population size, the 
higher the odds of stochastic events to happen (genetic drift). Larger 
population sizes, in turn, lead to more deterministic processes involving 
natural selection. 

§ Reproductive biology – The way insects go through their life cycles varies 
dramatically. These differences need to be accounted for with parameters 
defining their life stages, their mode of reproduction and their reproductive 
potential. 

§ Natural mortality – The majority of insect species have their populations 
naturally controlled by biotic and environmental phenomena (e.g. resource 
availability, predation, seasonal temperature variations, etc.). Pest insects 
are also subject to these phenomena, but to different extents in different 
situations. 

§ Migration rate – The ability of genes to spread across populations is 
regulated by the migration rate in the meta-population. The higher its value, 
the more rapidly a resistant mutation will spread in space. 

o Genetics 
§ Resistance factor – This parameter works as a summary of complex 

underlying biochemical processes that determine how much more successful 
resistant individuals are when compared to susceptible ones. The more 
relatively successful a resistant form is, the more quickly it will tend to 
dominate the population.  

§ Standing resistance-allele frequency – This determines how common 
resistant forms are before the population is exposed to the treatment (either 
by standing genetic variation or mutation). If resistant forms are common, 
pest resistance will emerge more rapidly. 



 

§ Other genetic factors – The genetics of adaptation can be very complex, 
involving multiple genes, modes of inheritance, degrees of expression, and 
dominance within and between loci. Models for resistance evolution 
normally assume the simplest case (one gene with two forms), but 
researchers are investigating what consequences deviations from this case 
can have in the final outcome (i.e. time to resistance). 

• Fundamental crop-protection parameters 
o Baseline efficacy of the product(s) against different pest life stages – The efficacy 

(strength) of an insecticide combined with the resistance factor (above) determines 
the selective force applied to the population. An insect that is resistant to a strong 
product will have relatively more reproductive success than an insect resistant to a 
weaker insecticide, when compared to the respective susceptible forms. 

o Crop protection strategy (e.g. product alternations and mixtures, crop(s) – This 
characteristic of a model aggregates as series of parameters related to how the pest 
control is carried out. It is precisely at this point that different scenarios can be 
devised and compared to find the more adequate solutions to keep resistance at 
bay. 

• Additional parameters 
o Weather – Weather has direct effects on the biology of both pest and crop.  It is 

important to account for weather variation when providing resistance-evolution 
predictions.  

o Crop-pest interactions – A crop may provide different levels of support to a pest 
population depending on its development stage and variety. This translates into 
different maximum population sizes for the pest, which affects directly the first 
parameter discussed in this list (above). 

o Landscape parameters (e.g. proportion of crop fields, nature and other areas) – 
Evolution of resistance happens in time and space. The time frame to be investigated 
is generally clear and straightforward (e.g. 25 or 50 years); the space can vary 
dramatically in size and composition. Models often include different scenarios for the 
latter (e.g. field mosaics), whereas the total area is generally as large as what can be 
treated with current computational power, especially with individual-based models. 

 

Modelling evolutionary processes is a complex undertaking and doing that for evolution of pesticide 
resistance is no exception. Therefore a good deal of modelling expertise combined with a deep 
understanding of evolution and agronomy is required to build sensible models and to make sense of 
their results. The effort is worthwhile, though: Modelling can provide much more precise and 
potentially accurate results, which can be directly translated into resistance management 
recommendations tailor-made for every situation. 

 
 

 

 

 

 

 



 

 

Figure 1 - Typical pattern of allele frequency evolution towards resistance obtained as a model output. The dark orange line 
represents the central estimate, the light orange area represent a confidence interval. 
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