

Insecticide resistance overview of the tobacco whitefly (*Bemisia tabaci*)

www.irac-online.org

Insecticide Resistance Action Committee

Introduction and background

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is one of the most critical invasive pests worldwide, and also known for its high potential of resistance development. It is a vector of serious plant diseases such as Tomato Yellow Leaf Curl Virus and Cucurbit Chlorotic Yellow Virus. In order to sustainably control *Bemisia tabaci*, it is important to implement resistance management programs.

The two most important sub-species of *Bemisia tabaci* are Middle East – Asia Minor 1 (MEAM1, also known as biotype B) and Mediterranean (MED, also known as biotype Q).

IRAC Group	Mode of Action	Sub- group	Chemical class / Compounds	Resistance		
				Juvenile stages	Adults	
1	Acetylcholinesterase inhibitors	А	Carbamates	Globally Widespread		
		В	Organophosphates	Globally Widespread		
3	Sodium channel modulators	Α	Pyrethroids	Globally Widespread		
4	nAChR competitive modulators	Α	Neonicotinoids	No reported cases	Several locations	
		с	Sulfoxaflor	Rare cases		
		D	Flupyradifurone	Rare cases		
7	Juvenile hormone mimics	С	Pyriproxyfen	Several locations	No active at life stage	
9	Effectors of chordotonal organs	В	Pymetrozine Pyrifluquinqzon	No reported cases	Several locations	
		D	Afidopyropen	No reported cases		
12	Inhibitors of mitochondrial ATP synthase	Α	Diafenthiuron	Rare	Rare cases	
15	Inhibitors of chitin biosynthesis affecting CHS1	-	Benzoylureas	No reported cases		
16	Inhibitors of chitin biosynthesis, type 1	-	Buprofezin	Isolated cases		
21	Mitochondrial complex I inhibitors	Α	METI's	Isolated cases		
23	Inhibitors of acetyl CoA carboxylase	-	Spiromesifen / Spirotetramat	Isolated cases	Not active of this life stag	
28	Ryanodine receptor modulators	-	Cyantraniliprole	No reported cases		
29	Chord. organ modulators, undefined	-	Flonicamid	No reported cases		
UN	Compounds of unknown or uncertain MoA	-	Azadirachtin	No reported cases		
UNB	Bacterial agents (non-BT) of Unknown MoA	-	e.g. Chromobacterium spp.	No reported cases		
UNE	Biological essences of Unknown MoA	-	e.g. Fatty acid monoesters	No reported cases		
UNF	Fungal agents of Unknown MoA	-	e.g. Beauveria bassiana	No reported cases		
UNM	Non-specific mechanical disrupters	-	Diatomaceus earth	No reported cases		

No reported cases mean no published or unpublished data is available to suggest a case of resistance

Latest resistance status of major insecticide IRAC groups (2020) Group 1: Carbamates & Organophosphates

Resistance has been observed since 1980's and is globally widespread. Resistance has been linked to elevated levels of esterases and insensitive acetylcholinesterase.

Group 3A: Pyrethroids

Resistance has been observed since 1980's and is globally widespread. Resistance has been linked to target site mutations in the sodium channel (e.g. L925I,T929V)

Group 4: Neonicotinoids, Sulfoximines, Butenolides

Resistance to neonicotinoids (4A) has been documented in Europe since the late 1990's. Subsequently resistance has spread to several locations globally, including North and South America, Europe, Asia and Africa. Resistance is particularly conferred by elevated levels of CYP6CM1, a P450 enzyme elevated in adults, but much less in nymphs. Sulfoximines (4C) and butenolides (4D) are described to be unaffected by this mechanism of resistance.

Group 7C: Pyriproxyfen

Resistance has been reported in South Europe, USA and Israel since the 2000's and more recently in some regions of Brazil. Potential involvement of cytochrome P450s in pyriproxyfen resistance has been suggested.

Group 9B: Pymetrozine & Pyrifluquinazon

The elevated level of enzymes which are known to confer resistance to neonicotinoids are also known to affect pymetrozine and to a lesser extent pyrifluquinazon. As with neonicotinoids, resistance occurs in adult whiteflies whereas nymphs are much less affected.

Group 23: Spiromesifen/Spirotetramat

Recently isolated cases of resistance to spiromesifen and spirotetramat were described in Spanish and Australian populations of MED- and MEAM1-type *B. tabaci,* respectively. Resistance is conferred by a target-site mutation (A2083V) in acetyl-CoA carboxylase.

Other modes of action

There are no or very limited documented cases of resistance to the other IRAC mode of action groups registered for the control of *Bemisia tabaci*.

Before the implementation of resistance management strategies, it is recommended to consult local experts for latest updates on the resistance situation within your region. Insecticide susceptibility can vary between locations and at different times.

Resistance Management (See the IRAC Bemisia tabaci Pest Page for more information at www.irac-online.org/pests/bemisia-tabaci/)

IRAC highly recommends monitoring the level of resistance carefully in order to allow appropriate recommendations for insecticide resistance management (IRM). The most widely followed approach in IRM is based on defined 'MoA treatment windows', where a treatment window is defined by the life-cycle of the pest. The basic aim of the strategy is to avoid treating consecutive generations with insecticides of the same MoA. For more information and advice regarding *B. tabaci* and IRM approaches, please visit IRAC web page: www.irac-online.org

This poster is for educational purposes only. Details are accurate to the best of our knowledge but IRAC and its member companies cannot accept responsibility for how this information is used or interpreted. Advice should always be sought from local experts or advisors and health and safety recommendations followed. Designed & produced by IRAC Sucking Pest Working Group Team, Poster Ver. 2.1, Based on Mode of Action Classification Ver. 9.4 CropLife Y